
姓名:杨敏
职称:副教授
邮箱:yangmin1221@hnu.edu.cn;yangmin1221@foxmail.com.
一、基本情况
杨敏,博士,湖南大学人工智能与百乐汇4001官网副教授,硕士生导师,湖南省芙蓉学者青年学者,湖南大学岳麓学者,机器人视觉感知与控制技术国家工程研究中心(王耀南院士、张辉教授团队)骨干成员。主要从事于机器人数据驱动控制、优化与最优控制、多机器人协同控制、机器人运动规划与具身智能等教学和科研工作。
近三年主持国家自然科学基金青年项目、长沙市自然科学基金、湖南省教育厅优秀青年项目、小荷科技人才项目和中央高校基本科研基金项目各1项,参与国家自然科学基金重大项目、国家自然科学基金区域创新发展联合重点项目、国家自然科学基金重点项目、广州市重点研发项目等多项。近年来以第一作者/通讯作者在IEEE Transactions on Neural Networks and Learning Systems,IEEE Transactions on Cybernetics和IEEE Transactions on Systems, Man, and Cybernetics: Systems等国际顶级期刊及会议发表论文20余篇,授权国家发明专利13项。
二、教育与工作经历
2022/07-至今,湖南大学人工智能与百乐汇4001官网,副教授
2017/09-2022/07,中山大学电子与信息工程学院,信息与通信工程,博士
2013/09-2017/07,中山大学电子与信息工程学院,自动化,本科
三、研究方向
机器人数据驱动控制、优化与最优控制、多机器人协同控制、机器人运动规划与具身智能等。
四、招生信息
欢迎对运动规划与控制、具身智能和机器人感兴趣的研究生与各年级优秀本科生加入课题组,提供一流的实验条件与细致的指导。课题组研究经费充足,科研氛围良好,欢迎感兴趣的同学邮箱联系。
五、奖励与荣誉
>湖南省芙蓉学者青年学者,2025
>湖南省小荷科技人才,2024
>湖南大学岳麓学者,2022
>湖南大学优秀班主任,2024
>湖南大学优秀毕业论文指导老师,2024
>湖南大学优秀工会积极分子,2024
>湖南大学招生宣传工作优秀个人,2024
>各项竞赛获奖指导老师
六、教学教改
>承担人工智能和机器人工程本科生课程:最优化方法(必修)、机器人运动控制(选修)、机器人专业综合设计(必修);
>主持湖南省研究生教学改革项目1项;
>指导所带班级获得湖南大学优秀班集体,指导本科生获得湖南大学本科优秀毕业论文、大学生创新创业训练计划项目省级1项和国家级1项、美国大学生数学建模竞赛M奖、中国移动创客马拉松比赛银点子奖、“挑战杯”湖南大学选拔赛三等奖等。
七、科研项目
1,国家自然科学基金青年项目,递归神经网络与模糊控制联合驱动的时变问题自适应求解及应用,2024-2026,在研,主持;
2,长沙市自然科学基金,基于隐式离散神经动力学的时变问题实时求解和应用研究,2023-2024,结题,主持;
3,湖南省教育厅优秀青年项目,基于神经动力学的多机器人协同控制方法研究,2025-2026,在研,主持;
4,湖南省小荷科技人才项目,2025-2026,在研,主持;
5,中央高校基本科研基金项目,基于神经动力学的机器人高精度及自适应控制,2022-2025,在研,主持;
6,国家自然科学基金重大项目,重大装备制造的集群机器人关键技术验证与应用,2023-2027,在研,参与;
7,国家自然科学基金区域创新发展联合重点项目,面向复杂装配任务的智能机器人技能学习与控制关键技术研究,2024-2027,在研,参与;
8,国家自然科学基金重点项目,面向智能生化实验复杂操作的多机器人协作共融关键技术研究,2025-2029,在研,参与;
9,广州市重点研发项目,基于类脑计算的视觉感知与控制关键技术研究及机器人集成,2020-2022,结题,参与。
八、代表性论文
期刊论文
[1]Chengyu Li(本科生,已保研至清华大学), Hui Zhang, Kaixu Chen, andMin Yang(*), Novel noise-tolerant zeroing neurodynamics algorithms for dynamic nonlinear least square problems with robot application,IEEE Transactions on Industrial Electronics,accepted, 2025.
[2]Min Yang, Yuxin Guo(本科生,已保研至东南大学), Siying Zhu, Ning Tan, Bolin Liao, and Hui Zhang, A novel data-driven DRNN-SMC model for redundant manipulators,IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 55, no. 6, pp.4322-4333, 2025.
[3]Min Yang, Xiaohan Bai(本科生,已保研至哈尔滨工业大学), Ning Tan, Bolin Liao, and Lin Xiao, Fuzzy-control-aided ZNN for minimum energy consumption scheme of redundant manipulator,IEEE Transactions on Systems, Man, and Cybernetics: Systems, in press, vol. 55, no. 9, pp. 6338-6348, 2025.
[4]Min Yang, Siying Zhu(本科生,已保研至湖南大学), Yuxin Guo, Kaixu Chen, Hui Zhang, and Wei Xiao (*), A novel model-free DZNN-QN algorithm for redundant manipulator control,IEEE Transactions on Industrial Electronics,accepted, 2025.
[5]Jian Li, Shuang Pan, Kaixu Chen, Xinhui Zhu, andMin Yang(*), Inverse-free discrete ZNN models for solving future nonlinear equality and inequality system with robot manipulator control,IEEE Transactions on Industrial Electronics, accepted, 2025.
[6]Wei Xiao, Ke Tang, Hanlin Zhu, Xuenan Du, Dean Hu, andMin Yang(*), Voltage response and effect mechanism of stretchable magnetoelectric composites,International Journal of Mechanical Sciences, vol. 301, pp. 110544, 2025.
[7]Min Yang, New second-level-discrete zeroing neural network for solving dynamic linear system,IEEE/CAA Journal of Automatica Sinica, vol. 11, no. 6, pp. 1521-1523, 2024.
[8]Min Yang, Yunong Zhang, and Haifeng Hu, Inverse-free DZNN models for solving time-dependent linear system via high-precision linear six-step method,IEEE Transactions on Neural Networks and Learning Systems, vol. 35, no. 6, pp. 8597-8608, 2024.
[9]Min Yang, Yunong Zhang, Ning Tan, and Haifeng Hu, Explicit linear left-and-right 5-step formulas with zeroing neural network for time-varying applications,IEEE Transactions on Cybernetics, vol. 53, no. 2, pp. 1133-1143, 2023.
[10]Min Yang, Yunong Zhang, Ning Tan, and Haifeng Hu, Concise discrete ZNN controllers for end-effector tracking and obstacle avoidance of redundant manipulators,IEEE Transactions on Industrial Informatics, vol. 18, no. 5, pp. 3193-3202, 2022.
[11]Min Yang, Yunong Zhang, Zhijun Zhang, and Haifeng Hu, 6-step discrete ZNN model for repetitive motion control of redundant manipulator,IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 8, pp. 4969-4980, 2022.
[12]Min Yang, Yunong Zhang, Ning Tan, Mingzhi Mao, and Haifeng Hu, 7-instant discrete-time synthesis model solving future different-level linear matrix system via equivalency of zeroing neural network,IEEE Transactions on Cybernetics, vol. 52, no. 8, pp. 8366-8375, 2022.
[13]Min Yang, Yunong Zhang, Zhijun Zhang, and Haifeng Hu, Adaptive discrete ZND models for tracking control of redundant manipulator,IEEE Transactions on Industrial Informatics, vol. 16, no. 12, pp. 7360-7368, 2020.
[14]Min Yang, Yunong Zhang, Haifeng Hu, and Binbin Qiu, General 7-instant DCZNN model solving future different-level system of nonlinear inequality and linear equation,IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 9, pp. 3204-3214, 2020.
会议论文
[1]Min Yang,Kaixu Chen, and Hui Zhang (*), Novel data-driven repetitive motion control scheme for redundant manipulators with zeroing neurodynamics, 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025), Hangzhou, China.
[2]Min Yang, Siying Zhu, and Hui Zhang (*), Inverse-free and data-driven motion tracking control for redundant robot with fuzzy recurrent neural network, 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025), Hangzhou, China.